Splicing based body-temperature thermometer

Screen Shot 2018-03-06 at 07.06.39

This work from the Lab of RNA Biochemistry at the Freie University Berlin shows just how sensitive splicing is to small changes in body temperature.

They looked at alternative splicing (AS) of U2af26 across a physiologically relevant temperature range (35-40oC). [U2af26 is a component of the essential splicing factor U2af (U2 auxiliary factor) where it can substitute for U2af35 in heterodimers with U2af65]

The authors show that U2af26 exon 6/7 skipping showed a very nice linear correlation with the temperature (see their figure below), suggesting that AS is able to react in a thermometer like way to read body temperature changes.

Screen Shot 2018-03-06 at 07.06.01

The paper goes on to show an involvement for SR proteins in temperature-regulated U2af26 AS, primarily via modulation of the phosphorylation state of SRs. The authors speculate that there will be a physiological role for temperature-controlled AS in other phenomena, such as hypothermia and fever.



Drawing Splicing 1


Back to thinking about how to explain alternative splicing in an easy, graphical or pictorial way.

Here’s an attempt at sketching plant cells under a microscope. Grid like arrangement of cells, with chloroplasts (photosynthesis organelles) as greenish circles, and the cell nucleus as dark circles/blobs.

Not entirely sure where this is going…maybe a cartoon. Still hope to include Pandas somewhere along the line…

20 years of the the RNA Journal

RNA journal front cover cropped
Cover Art: Group in Sea, 1979, by Philip Guston

The RNA Journal is twenty years old and as part of their anniversary around 130 researchers in the field of RNA biology have contributed some of their personal reflections of working in this area. Contributors include Douglas Black, Michael Rosbash and Alberto Kornblihtt.

I’ve browsed through some of the essays and one that caught my attention was ‘Thoughts on NGS, alternative splicing and what we still need to know‘ by Kristen Lynch. Here she emphasises the need to determine the functional consequences of alternative splicing for an organism, and as she pointedly says ‘To truly appreciate the full impact of alternative splicing on biologic processes, and argue against those who wonder if it might all be “noise,” we need to do better. The question is how to achieve this goal’. [Note that NGS in the title of the article refers to Next Generation Sequencing]

As a relative newcomer to the field of AS, I think it’ll be useful for me to delve into these articles – they seem to be a refreshing way to learn how quickly research into AS has ‘evolved’ as well as providing an honest outlook as to what areas seem to be a priority for future work.

The cover art in interesting too – it is entitled ‘Group in Sea, 1979, by Philip Guston‘. He was an American abstract expressionist painter.

Follow us on Twitter – you can find us @SpliceTime